Pentylenetetrazol modulates redox system by inducing addicsin translocation from endoplasmic reticulum to plasma membrane in NG108-15 cells

نویسندگان

  • Mitsushi J. Ikemoto
  • Yusuke Murasawa
  • Pi-Chao Wang
چکیده

Addicsin (Arl6ip5) is a multifunctional physiological and pathophysiological regulator that exerts its effects by readily forming homo- and hetero-complexes with various functional factors. In particular, addicsin acts as a negative modulator of neural glutamate transporter excitatory amino acid carrier 1 (EAAC1) and participates in the regulation of intracellular glutathione (GSH) content by negatively modulating EAAC1-mediated cysteine and glutamate uptake. Addicsin is considered to play a crucial role in the onset of neurodegenerative diseases including epilepsy. However, the molecular dynamics of addicsin remains largely unknown. Here, we report the dynamics of addicsin in NG108-15 cells upon exposure to pentylenetetrazol (PTZ), a representative epileptogenic agent acting on the gamma-Aminobutyric acid A (GABAA) receptor. Fluorescent immunostaining analysis demonstrated that addicsin drastically changed its localization from the endoplasmic reticulum (ER) to the plasma membrane within 1 h of PTZ exposure in a dose-dependent manner. Moreover, addicsin was co-localized with the plasma membrane markers EAAC1 and Na+/K+ ATPase alpha-3 upon PTZ stimulation. This translocation was significantly inhibited by a non-competitive GABAA receptor antagonist, picrotoxin, but not by a competitive GABAA receptor antagonist, bicuculline. Furthermore, lactate dehydrogenase (LDH) assay and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical-scavenging assay showed that PTZ-induced addicsin translocation was accompanied by a decrease of radical-scavenging activity and an increase of cytotoxicity in a PTZ dose-dependent manner. These findings suggest that PTZ induces the translocation of addicsin from the ER to the plasma membrane and modulates the redox system by regulating EAAC1-mediated GSH synthesis, which leads to the activation of cell death signaling.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cytoplasmic acidification reduces potassium channel activities in the endoplasmic reticulum of rat hepatocytes

Introduction: Intracellular pH (pHi) regulates essentially all aspects of cellular activities. However, it is unknown how endoplasmic reticulum (ER) potassium channels sense pHi. In this study, we investigate the direct effects of pHi on ER potassium channels. Methods: We used channel incorporation into the bilayer lipid membrane method. L-α-phosphatidylcholine, a membrane lipid, was extrac...

متن کامل

The translocation, folding, assembly and redox-dependent degradation of secretory and membrane proteins in semi-permeabilized mammalian cells.

We describe here a semi-permeabilized cell-system which reconstitutes the efficient synthesis, translocation, folding, assembly and degradation of membrane and secretory proteins. Cells grown in culture were treated with the detergent digitonin which selectively permeabilized the plasma membrane leaving the cellular organelles, such as the endoplasmic reticulum (ER) and trans-Golgi network inta...

متن کامل

The Ero1α-PDI Redox Cycle Regulates Retro-Translocation of Cholera Toxin

Cholera toxin (CT) is transported from the plasma membrane of host cells to the endoplasmic reticulum (ER) where the catalytic CTA1 subunit retro-translocates to the cytosol to induce toxicity. Our previous analyses demonstrated that the ER oxidoreductase protein disulfide isomerase (PDI) acts as a redox-dependent chaperone to unfold CTA1, a reaction postulated to initiate toxin retro-transloca...

متن کامل

Sesterin as a biomolecule

Sestrins (Sesns), highly conserved stress-inducing metabolic proteins, are known to protect organisms against various harmful stimuli including DNA damage, oxidative stress, endoplasmic reticulum (ER) stress, and hypoxia. Sestrins regulate metabolism mainly through activation of AMP-dependent protein kinase (AMPK) and inhibition of rapamycin complex 1 (mTORC1). Sestrins also play a pivotal role...

متن کامل

Evidences on the existence of a new potassium channel in the rough endoplasmic reticulum (RER) of rat hepatocytes

Introduction: we have recently reported the presence of two potassium currents with 598 and 368 pS conductance in the rough endoplasmic reticulum (RER) membrane. The 598 pS channel was voltage dependent and ATP sensitive. However, the 368 pS channel was rarely observed and its identity remained obscure. Since cationic channels in intracellular organelles such as mitochondria and RER play imp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2017